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Abstract: Metrics measuring tracking reliability under occlusion that are based on mutual
information and do not resort to ground truth data are proposed. Metrics for both the initialisation of
the region to be tracked as well as for measuring the performance of the tracking algorithm are
presented. The metrics variations may be interpreted as a quantitative estimate of changes in the
tracking region due to occlusion, sudden movement or deformation of the tracked object.
Performance metrics based on the Kullback–Leibler distance and normalised correlation were also
added for comparison purposes. The proposed approach was tested on an object tracking scheme
using multiple feature point correspondences. Experimental results have shown that mutual
information can effectively characterise object appearance and reappearance in many computer
vision applications.

1 Introduction

Partial or full occlusion is an important issue in an object
tracking process. A variety of algorithms handling occlusion
exist [1–4], however, they do not handle total occlusion
properly. Tracking is performed in [1] using sum of squared
differences (SSD). Tracking does not rely on feature point
sets. Partial occlusion and illumination changes are handled,
nevertheless, the proposed algorithm does not handle full
occlusion. A contour tracking algorithm is proposed in [2].
The resulting scheme is reliable in image clutter and partial
occlusion, but it is not reliable for large amounts of
occlusion. The algorithm presented in [3] relies on
deformable templates and can handle moderate amounts
of partial occlusion. In [4] the role of geometric invariants in
tracking is examined. Feature point tracking verification
using geometric invariants is presented. The aim of the
method is to compute the target feature point set using
geometric invariants. An algorithm insensitive to the
disappearance and reappearance of feature points is
described in [5]. Although the above mentioned methods
handle partial occlusion, few of them behave well under
total occlusion.

A model-based tracking scheme performing object
tracking using edge information and capable of handling
partial and total occlusion is proposed in [6]. The proposed
method can handle partial and total occlusion events but is
computationally expensive. A new approach to occlusion
resistant object tracking using Kalman filtering and robust
statistics has been proposed [7] that can handle full
occlusion for short time periods. The way the tracking
system recovers after total occlusion requires that the
position of the disoccluded object lies within the tracker’s
search range. Another approach to tracking multiple

articulated objects in the presence of occlusion based on a
Kalman filtering mechanism is presented in [8]. This system
was tested in a surveillance scheme used to track moving
people. The algorithm has shown good results in severe
partial occlusion caused by inter-object and object–
environment interference. Finally, a probabilistic multiple
object tracking approach working under inter-object
occlusions is presented in [9].

The performance measure of a tracking algorithm is also
an open issue. Although most of the proposed techniques
apply subjective evaluation methods, some of them use
quantitative approaches based on ground truth [10]. There-
fore, implementation of reliability measures not resorting to
ground truth data is particularly important. Several metrics
for performance evaluation of tracking algorithms without
ground truth, based on colour and motion were introduced in
[11]. More recent work on these metrics provides their
incorporation in a tracking scheme in order to perform better
tracking [12]. A variety of confidence measures for the
analysis of optical flow techniques was presented in [13],
however, the confidence measures analysed are only used
for the evaluation of the velocity field and are application
oriented.

The use of mutual information in object tracking as a tool
for extracting information concerning the condition of a
tracking object is assessed in this paper. The proposed
scheme is efficient in extracting information under partial
and total occlusion. Mutual information was first introduced
in computer vision in [14] for medical image registration
applications. In [15, 16] it was applied to combine the
outputs of multiple tracking algorithms in order to improve
the overall tracker performance.

In the proposed method, the tracking process is modelled
as a communication task between a transmitter and a
receiver through a channel. Information theory-based
metrics are introduced. The mutual information is used as
a quantitative measure of the tracking process. Its variations
can improve understanding of the tracked region character-
istics and are closely related to changes in the tracked
region. These changes are caused by partial or total
occlusion, movement of the occluding object and abrupt
movements or deformations of the occluded (tracked)
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object. Determining and understanding these changes may
improve tracker performance and assist an event detection
scheme. Measures based on the Kullback–Leibler distance
and the normalised correlation are also implemented for
comparison purposes. The entropy is used as a measure of
the initialisation efficiency of the tracking process and is
closely related to the first metric. The proposed metrics were
tested on a feature point based tracking algorithm [17]. The
algorithm is enhanced with an occlusion handling scheme,
while an object reappearance verification scheme is also
designed to allow tracking continuation after object
reappearance. It relies on a mutual information-based
metric measuring the similarity between a reference and a
target region. The modified tracking algorithm performs
better than [17] in partial and total occlusion situations.

The main contribution of the current work is the
introduction of information theory based metrics as
measures of tracking reliability. The use of the metrics
does not impose utilisation of ground truth data and is
extended to the analysis of partial and total occlusion in
object tracking. Moreover, occlusion is processed without
resorting to multiple camera systems fusing the outputs of
different tracking cues.

2 Feature point generation and tracking

Object tracking is performed by minimising the sum of
squared differences of a large set of feature points generated
in the tracking region. The algorithm presented in [17] is
used for feature point tracking. Kalman filtering motion
prediction is employed to estimate the tracked region
position during occlusion. The tracked region in the
subsequent video frame is specified as the bounding
rectangle of all the tracked feature points. Robustness to
partial occlusion is achieved by estimating the motion of the
lost feature points, using the estimated motion of the
bounding box of the tracked object.

The displacement d ¼ ½dx; dy�T between two feature point
windows on images J2 and J1 is obtained by minimising

� ¼
Z Z

W
J2 x þ d

2

� �
� J1 x � d

2

� �� �2

wðxÞdx ð1Þ

where x ¼ ½x; y�T ; W is the region of the intergration
window and w(x) is a weighting function that can be set to 1
for simplicity. Equation (1) uses

J2 x þ d

2

� �
� J1 x � d

2

� �� �

instead of ½J2ðxÞ � J1ðx � dÞ� used in [17], because of its
symmetry with respect to both images [18]. In order to
perform one iteration of the minimisation procedure of (1),
the equation Zd ¼ e must be solved where

Z ¼
Z Z

W
gðxÞgTðxÞwðxÞdx ð2Þ

e ¼ 2

Z Z
W
½J1ðxÞ � J2ðxÞ�gðxÞwðxÞdx ð3Þ

and

g ¼
@ðJ1 þ J2Þ
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@ðJ1 þ J2Þ
@y

2
664

3
775 ð4Þ

Feature point occlusion is determined using the process
described in [17] and is essentially controlled by the

residue �: Large values of � when compared to a predefined
threshold imply that the feature point of interest should be
rejected. The object tracking occlusion handling is based on
feature point occlusion handling as presented in [17] That is,
an object part is considered lost when the feature points
‘belonging’ to that part are lost. Other methods of occlusion
handling involve the use of constraints based on articulation
[19] and layer representation [20]. The approach used in the
context of the present work is general and can be used in a
variety of applications. The layer representation method is
very useful in coding and compression, while the role of
articulation constraints in determining self-occlusions in
human body part tracking is vital.

In order to avoid tracking stationary or slowly moving
background feature points, we have introduced a clustering
procedure. The mean ðmx; myÞ and the variance ðsx; syÞ of
the feature point co-ordinates are computed for the tracked
region in each frame. Let ½x; y�T be the co-ordinates of a
feature point at video frame t and ðmx; myÞ; ðsx; syÞ their
mean and variance. A feature point is retained in video
frame t þ 1; if x 2 ½mx � sx; mx þ sx� and y 2 ½my � sy; my þ
sy�; otherwise it is rejected. Assuming that the object feature
points have similar motion patterns, we can reject stationary
or slow moving background features, after a number of
frames, while retaining the moving object feature points.
This procedure is particularly useful, if the initialised region
to be tracked contains some portions of background regions.

2.1 Initialisation

The region bounding rectangle is used to specify the region
to be tracked. A large number of feature points is generated
inside the tracked region using the process described in
[17, 18, 21]. A good feature point is defined as one whose
matrix Z has two large eigenvalues that do not differ by
several orders of magnitude [21]. In order to avoid loss of
target, caused by too many lost feature points, the feature
point set is periodically regenerated. Different strategies for
the periodic feature point regeneration can be applied. It can
be thorough (the entire feature point set is regenerated),
periodic (it occurs after a fixed number of frames) or
asyncronus (its occurrence is based on the tracking process
metric value). Feature point generation and tracking are
transparent to the observer.

The number of the generated feature points is essentially
user controlled. The user controls the number of feature
points by selecting their number and the minimum allowed
distance between the feature points. Let Ns be the desired
number of feature points selected by the user. The number
Nk of feature points generated in the region to be tracked
depends essentially on the minimal allowed distance
between the feature points ðNk 	 NsÞ: Therefore, a set of
the possible configurations of the ensemble of the possible
feature point sets can be defined. Large minimum allowed
distances between feature points may lead to a small Nk and
poor tracker performance.

3 Robustness to partial and total occlusion

The previously described tracking process can be modelled
as a communication between a transmitter (reference frame)
and a receiver (target frame) with an Nmax symbol alphabet
(the maximal number of greyscale levels). The tracking
process is characterised by loss of information caused by
feature point rejection and wrong feature point correspon-
dences. Mutual information is a well known measure of the
amount of information transmitted through the communi-
cation channel [22, 23]. Therefore, it can be used as a
quantitative measure of tracking performance.
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3.1 Mutual information as tracker evaluation
metric

Let xr
i and xc

i represent the co-ordinate vectors of feature
point i in the reference and current frame, respectively.
During the tracking process, a feature point set of the initial
video frame

S1 ¼ xr
1 . . . ; xr

Nk

� T ð5Þ

is tracked to a feature point set

S2 ¼ xc
1; . . . ; xc

N½ �T ð6Þ

of the target video frame, with N 	 Nk; Nk 	 Ns; where Ns

is the initial user preference for the number of the feature
points.

Let U, V be two random variables with marginal
probability mass functions p(u), p(v) and ui ¼ J1ðxr

kÞ; vj ¼
J2ðxc

kÞ their possible outcomes, where J1 and J2 are the
reference and target image respectively and xr

k 2 S1; xc
k 2

S2: The mutual information of the two random variables U,
V with a joint probability mass function p(u, v) is defined as

IðU;VÞ ¼
XNmax

i¼1

XNmax

j¼1

pðui; vjÞ log2

pðui; vjÞ
pðuiÞpðvjÞ

ð7Þ

where Nmax is the maximum number of the available
greyscale levels. In order to take into account the lost feature
points during the tracking process, a cost function Em is
defined:

EmðU;V;N;NkÞ ¼ c1

IðU;VÞ
ImaxðU;VÞ � l1

Nk � N

Nk

þ c2

� �
ð8Þ

The term IðU;VÞ=ImaxðU;VÞ is the mutual information part
of the cost function. The maximum mutual information
ImaxðU;VÞ is [24]:

ImaxðU;VÞ ¼ �
XNmax

i¼1

pðuiÞ log2 pðuiÞ ð9Þ

The term ðNk � NÞ=Nk is a penalising quantity depending
on the number of the lost feature points during the tracking
process. The use of the penalising term is necessary,
because the mutual information part of the metric measures
only the matching efficiency between the feature points that
have not been lost. In the context of present work c1 ¼ 0:5;
l1 ¼ 1; c2 ¼ 1: The constants c1; c2; l1 are chosen to satisfy

0 	 Em 	 1 ð10Þ

In the case of total occlusion:

IðU;VÞ
ImaxðU;VÞ ¼ 0 and

Nk � N

Nk

¼ 1 ð11Þ

leading to the minimum value of Em: The maximum value
of Em occurs when

IðU;VÞ ¼ ImaxðU;VÞ and N ¼ Nk ð12Þ

The metric Em is a measure of the information flow during
the tracking process. Large values of Em represent large
amounts of information carried from the reference region to
the target output region. In this case, the similarity between
the reference region and the target region and, consequently,
the reliability of the tracker output, are high. Small values of
Em are an indication that the tracking process is unreliable.

3.2 Kullback–Leibler distance-based tracking
metric

The Kullback–Leibler distance is defined as [25]

DðpðuÞkpðvÞÞ ¼
XNmax

i¼1

pðuiÞ log2

pðuiÞ
pðviÞ

ð13Þ

and measures the similarity between pðuiÞ and pðviÞ: It is not
symmetric, i.e. in general DðpðuÞkpðvÞÞ 6¼ DðpðvÞkpðuÞÞ:
An upper bound of the Kullback–Leibler distance can be
easily found as follows, since

DðpðuÞkpðvÞÞ ¼
XNmax

i¼1

pðuiÞ log2

pðuiÞ
pðviÞ

¼
XNmax

i¼1

pðuiÞ log2 pðuiÞ �
XNmax

i¼1

pðuiÞ log2 pðviÞ

ð14Þ
The first term is negative or zero, while the second is
positive. Therefore, an upper bound of the Kullback–
Leibler distance is

DðpðuÞkpðvÞÞ 	 �
XNmax

i¼1

pðuiÞ log2 pðviÞ ð15Þ

A similar metric to EmðU;V ;N;NkÞ based on the Kullback–
Leibler distance can be defined as

EKðU;V ;N;NkÞ¼c1 1� DðpðuÞkpðvÞÞ
DmaxðpðuÞkpðvÞÞ�l1

Nk�N

Nk

þ c2

� �
ð16Þ

and by construction is expected to behave similarly to Em:
Large values of EK imply better matching between the
reference and the target region. Both mutual information
and Kullback–Leibler tracking metrics are expected to
perform best when we have planar object motion with
partial and total occlusions.

3.3 Normalised correlation-based metric

The normalised correlation between the reference and the
target feature point sets can be defined as [26]

Cn ¼
PN

i¼1 J1 xr
ið ÞJ2 xc

ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 J2

1 xr
ið Þ
PN

i¼1 J2
2 xc

ið Þ
q ð17Þ

since a one by one correspondence exists between the feature
point sets. Equation (17) expresses the similarity between J1

and J2 and can be used to construct a metric similar to those
already presented in the context of present work (see (8) and
(16)). The metric constructed is of the form

Corr ¼ c1 Cn � l1

Nk � N

Nk

þ c2

� �
ð18Þ

and was also tested under similar tracking conditions to the
other two. It holds that

0 	 Corr 	 1 ð19Þ
The values of the constants c1; c2; l1 are the same as in (8)
and (16).

3.4 Tracker initialisation evaluation metric

Since the feature point set S1 generated on the initial frame
belongs to the power set of the possible feature point set
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configurations, a metric measuring the reliability of S1 can
be defined. It can characterise the efficiency of the initially
selected region for tracking. Each feature point set Sk is
characterised by its entropy:

HSk
¼ �

XNmax

i¼1

pkðuiÞ log2 pkðuiÞ ð20Þ

where u ¼ JðxÞ are the image luminances at feature point
locations on the initial frame. Let Nk be the number of
feature points generated in the tracked region. In general,
Nk 	 Ns: The maximal value of HSk

depends on Nk; if Nk 	
Nmax; since in that case the number of greyscale levels,
belonging to the feature point set, cannot reach Nmax: Then
the distribution pkðuiÞ ¼ 1=Nk can create an upper bound
HSk

if Nk 	 Nmax: Therefore

pkðuiÞ ¼
1

Nk
Nk 	 Nmax

1
Nmax

Nk > Nmax

(
ð21Þ

Clearly HSk
is maximised when Nk � Nmax and pkðuiÞ ¼

1=Nmax: The maximal symbol value of the communication
alphabet is Nmax (maximum number of greyscale levels). In
order to handle degenerative cases, where the number of the
generated feature points Nk is much smaller than the initial
user preference Ns; a penalising term depending on the
number of not generated feature points is added. Such cases
occur when the minimum allowed distance between feature
points is large, compared to the region size. Therefore, the
metric, measuring the efficiency of the feature point sets
produced during the initialisation step, is defined as

EiðHSk
;Nk;NsÞ

¼

HSk

log2 Nk
NT 	 Nk < Nmax

lH
HSk

log2 Nk
þ lF

Nk

Ns
Nk < Nmax; Nk < NT

HSk

log2 Nmax
NT 	 Nk; Nmax 	 Nk

lH
HSk

log2 Nmax
þ lF

Nk

Ns
Nmax 	 Nk; Nk < NT

8>>>>>><
>>>>>>:

ð22Þ

Threshold NT is usually a fraction of the user specified
feature point number Ns: In the context of present work we
have chosen Ns ¼ 180; NT ¼ Ns=4; lH ¼ 0:5; lF ¼ 0:5:
The penalising term is introduced only when Nk < NT : In
such cases the number of the feature points Nk is small and
the penalising term of (22) has to be added. The metric Ei is
a measure of efficiency of the initial feature point set
configuration. It imposes feature point selection based on
feature point set entropy. The initialisation metric imposes
large feature point set luminance variation by using entropy
maximisation. The most effective way of controlling the
feature point set configuration is by changing the minimum
distance between the feature points. Small distances lead to
a feature point concentration in certain parts of the object
being tracked. Larger distances usually help to provide
feature point sets with better coverage of the object being
tracked and to attain better tracking results. Ideally, the
average feature point distance should be greater than the
texture cell or grain size.

The entropy based selection criterion aims at imposing a
large feature point intensity dispersion in order to provide
better tracking results. The penalising term is introduced to
prevent a feature point set choice with too large distances
between feature points that contains a small number of
feature points. The initialisation criterion can also be

applied to untextured objects with limited success. The
choice of the initial feature point set configuration is
important for the success of the object tracking process.

4 Tracking algorithm enhancement

The tracking algorithm presented in Section 2 is enhanced
by using an occlusion handling scheme. It is capable of
handling partial and total occlusion in a variety of cases. The
occlusion handling scheme is assisted by an object
verification scheme, applied to total occlusion situations.
The object verification scheme is based on the metric Em; in
the context of the present work. Nevertheless, other
techniques, such as elastic graph matching, can also be used.

4.1 Occlusion handling

In order to cope with partial occlusion, a prediction scheme
is applied. The lost features are not tracked. However, their
co-ordinates are updated using the estimated movement of
the upper left and the lower right corner of the bounding
rectangle of the tracked object. The procedure is stopped if
the occlusion is total, that is, when none of the feature points
comprising the feature point set can be further tracked
correctly due to occlusion. In order to handle large
variations of the bounding box size, caused by feature
point loss, the area of the tracked region is introduced as a
reliability measure of the update of the upper left and lower
right bounding box co-ordinates. The feature points, whose
co-ordinates are updated, are considered lost if the bounding
box area exceeds a threshold Tmax or is smaller than a
threshold Tmin: Periodical regeneration of the lost feature
points during the tracking process using the procedure
presented in Section 2 is also a useful tool in order to handle
partial occlusion and allow tracking for long time periods.
The feature points not lost in the tracking process are not
regenerated. In order to cope with total occlusion, the
position of the occluded region is updated using the velocity
estimates of the region corners obtained from the measure-
ments before total occlusion with the help of a Kalman
filtering scheme.

The Kalman filtering prediction process is applied on the
upper left corner and the lower right corner of the region
bounding rectangle before total occlusion. A constant
acceleration model is used [27]. Let dðkÞ; uðkÞ; and aðkÞ
denote the displacement velocity and acceleration for each
corner of the bounding box at time k respectively. The state-
transition equation for each corner is [27]

sðkÞ ¼ Csðk � 1Þ þ wðkÞ k ¼ 1; . . . ;N ð23Þ
where w(k) is a zero-mean, white random sequence and s is
a 6  1 vector containing the co-ordinates of displacement
velocity and acceleration, for each corner of the bounding
box:

s ¼ dx dy ux uy ax ay

� T ð24Þ

The measurements d(k) are related to the state variables s(k)
with

dðkÞ ¼ HsðkÞ þ vðkÞ k ¼ 1; . . . ;N ð25Þ
where v(k) denotes a zero-mean, white observation noise
sequence. The matrices describing the model are given
below. The 2  1 observation vector and the 2  6
measurement matrix are given by:

d ¼ dx

dy

� �
ð26Þ
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H ¼ 1 0 0 0 0 0

0 1 0 0 0 0

� �
ð27Þ

The observation equation states that the noisy displacement
co-ordinates of each bounding box corner can be observed.

The 6  6 state transition matrix describing the model
is [27]

C ¼

1 0 1 0 0:5 0

0 1 0 1 0 0:5
0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

ð28Þ

4.2 Object reappearance prediction and
verification

Reappearance prediction is obtained by estimating and
tracking the occluding region. To estimate the occluding
region bounding box, a simple region growing segmentation
algorithm is used. A seed is determined by the last position
of the occluded region before total occlusion. The occluded
object is considered to be entirely disoccluded when

A1 \ A2 ¼ ; ð29Þ

where A1 is the occluding region and A2 is the predicted
occluded region. The occluded region reappears provided
that the above condition is satisfied. Reappearance is
associated with the regeneration of a set of feature points,
as in the initialisation step. Again, the selected feature points
for object reappearance are those that have large eigen-
values of matrix Z. The feature point regeneration is
thorough after total occlusion, that is the entire feature point
set is regenerated inside the bounding rectangle specified by
A2: Object tracking continues after the feature point set
regeneration.

When the tracker predicts that reappearance has taken
place, it has to decide if the reappearing region is similar
enough to the tracked region before occlusion. This can be
achieved by using the mutual information metric Em (8).
A feature point set is generated in the tracked region
belonging to the frame before total occlusion. The position
of this feature point set on the current frame is predicted.
The metric Em is calculated using the feature point sets of
the reference and target frames, while the predicted tracked
region is allowed to change slightly. The maximum of the
Em value is compared with a threshold. The threshold value

can be chosen according to the value of Em before total
occlusion.

Graph matching is an alternative technique that can be
used for object reappearance verification. Nevertheless, the
use of Em as previously described is preferred, in the context
of present work for simplicity and uniformity.

5 Experimental results

The proposed tracking algorithm was tested on both real and
artificially generated image sequences. In order to evaluate
the efficiency of the proposed scheme, image sequences
containing total occlusion and partial occlusion were used.
Curves showing the variations of the metrics Em; EK and
Corr during the tracking process were calculated for
different occlusion cases. The metric Ei of the tracking
algorithm initialisation efficiency, was tested on both
artificial and real image sequences.

The algorithm involves the choice of system parameters
in order to work. The parameters’ values are kept constant
during the experiments. The choice of Ns is left to the user
and depends mainly on the tracked object size. NT is a
fraction of Ns acquired by experience. The choice of c1; c2;
l1; lF and lH is imposed by the requirement 0 	 Em 	 1
and 0 	 Ei 	 1: Their value is kept constant throughout the
entirety of experiments. The choice of the minimum
distance between feature points is crucial to the tracking
process and is obtained by using the initialisation metric Ei:

Results on an artificial image sequence are presented in
Fig. 1. A small circular object (Fig. 1a) moves slowly from
right to left and is fully occluded by a faster moving
elliptical object that moves in the opposite direction
(Fig. 1b). The tracked region bounding rectangle is
recalculated after total disocclusion. The algorithm per-
forms well, even when the occluding object reappears
suddenly without previous appearance in the image
sequence. The cost function Em for various image sequence
frames is shown in Fig. 2. A decrease in Em begins after
frame 15, marking the beginning of partial occlusion. The
minimal value of Em ¼ 0 marks the beginning of total
occlusion. Object reappearance is marked by an abrupt
increase of Em: The frames corresponding to the start of
partial occlusion and the start of total occlusion are shown in
Fig. 3.

In Fig. 4, the tracked region (head of the football player)
is occluded by the foot of another football player. The cost
function Em for each frame of the image sequence is shown
in Fig. 5. Em drops to its minimum value Em ¼ 0 during total
occlusion. The results on real and artificial image sequences

Fig. 1 Artificial image sequence

a Before total occlusion
b During total occlusion
c Region reappearance
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show that Em can be useful in the analysis of partial and total
occlusion in object tracking. Partial occlusion is
accompanied by a drop of Em; while total occlusion is
characterised by a zero Em value. The sudden increase of
cost function Em after object reappearance in the example
of Fig. 4 is caused by generation of a feature point set
during object reappearance, as described in Section 4.2.
An increase of Em is possible whenever a feature point set
regeneration occurs.

In Fig. 6, results showing robustness to partial occlusions
are presented. A person’s face is partially occluded and,
at the end of partial occlusion, the tracked face reappears

completely. The beginning of partial occlusion in frame 34
(Fig. 7) is marked by a sudden drop in Em (Fig. 12). The
mutual information does not increase after face disocclu-
sion, since many feature points were lost during partial
occlusion that have not been regenerated after disocclusion.
Two frames showing the feature point sets before and after
partial occlusion are presented in Fig. 8. Notice the loss of
feature points, which is caused by partial occlusion. The
tracked region size is computed correctly with the help of
the partial occlusion handling scheme.

The object tracking algorithm containing the occlusion
handling scheme and the object reappearance prediction

Fig. 2 Cost function Em against frame number for artificial
image sequence of Fig. 1

Fig. 3 Artificial image sequence frames characterised by mutual information cost function

a Start of partial occlusion frame (frame no. 15)
b Start of total occlusion frame (frame no. 23)
c First frame after total object reappearance (frame no. 45)

Fig. 4 ‘Football’ image sequence

a Before total occlusion
b During total occlusion
c Region reappearance

Fig. 5 Value of cost function Em against frame number for part of
‘Football’ image sequence (Fig. 4)
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and verification scheme performs better than an object
tracking algorithm based, on [17] without these new
additions. In Fig. 9 the results of [17] without the new
additions on the ‘Football’ image sequence are presented.
Notice the performance degradation before total occlusion

and the loss of target after total occlusion versus the results
shown in Fig. 4. Similar results on the artificial image
sequence are presented in Fig. 10. Performance degradation
before total occlusion and loss of target after total occlusion
is also noticed, when compared with the results shown in

Fig. 6 Lab image sequence

a Tracked region
b Partial occlusion
c Region after occlusion

Fig. 7 Lab image sequence

a Beginning of partial occlusion (frame 34)
b Disocclusion (frame 101)
c Movement of the occluding region (frame 85)
d Movement of the occluding region (frame 86)

Fig. 8 Lab image sequence

a Feature point set before partial occlusion
b Feature point set after partial occlusion
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Fig. 9 ‘Football’ image sequence: tracking without occlusion handling and object reappearance prediction and verification

a Initial frame
b Before total occlusion
c After total occlusion

Fig. 10 Artificial image sequence: tracking without occlusion handling and object reappearance prediction and verification

a Initial frame
b Before total occlusion
c After total occlusion
Notice tracking degradation in b and in c

Fig. 11 Lab image sequence: tracking without occlusion handling and object reappearance prediction and verification

a Initial frame
b During partial occlusion
c After partial occlusion
Notice tracking degradation in b and in c

Fig. 12 Cost function Em for lab image sequence (Fig. 7) against
frame number

Fig. 13 Cost function EK for artificial image sequence (Fig. 3)
against frame number
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Fig. 3. Results on the lab image sequence are presented in
Fig. 11. Partial occlusion affects the tracking performance.
One part of the tracked object is lost during and after partial
occlusion, as can be seen in Fig. 11, in contrast to that shown
in Fig. 6.

The variations of the metric Em for the three sequences
are presented in Figs. 2, 5 and 12 respectively, while the
metric Ek variations are presented in Figs. 13, 14 and 15.
Finally, the variations of the Corr metric are presented in
Figs. 17, 18 and 19. As can be seen, metric Ek performs
similarly to Em: Further tests have shown that no significant
change in Ek behaviour was caused by its asymmetry
(Fig. 16). The normalised correlation-based metric Corr
does not behave as well as the information theory based
metrics in partial occlusion situations (Figs. 17, 18 and 19).
The authors believe that the information theory based
metrics should be preferred over the normalised correlation
metric. Mutual information can be very useful as it provides
spatial information and is symmetrical. The Kullback–
Leibler distance can provide a variety of metrics with
similar performance.

The variations of the initialisation performance metric Ei

(22) with respect to the minimum allowed distance in pixels
between feature points in the reference frame are presented
in Figs. 20 and 21 for the artificial image sequence and the
‘Football’ image sequence, respectively. The cost function

values are generally bigger in the ‘Football’ image sequence
than in the artificial image sequence case due to the fact that
the initialised region in the artificial image sequence is
uniformly textured. The value of Ei increases when the
minimum allowed distance between features increases,
provided that Nk ffi Ns: A rapid decrease in the Ei value is

Fig. 14 Values of cost function EK against frame number for part
of ‘Football’ image sequence (Fig. 4)

Fig. 15 Value of cost function EK against frame number for lab
image sequence (Fig. 7)

Fig. 16 Values of two forms of cost function EK based on Dðp
ðuÞkpðvÞÞ and DðpðvÞkpðuÞÞ for artificial image sequence (Fig. 3)

Fig. 17 Normalised correlation for artificial image sequence
(Fig. 3) against frame number

Fig. 18 Normalised correlation for ‘Football’ image sequence
(Fig. 4) against frame number
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noticed when the minimum allowed distance between
feature points increase causes the number of feature points
generated in the tracking region to be much smaller than the
initial user-preferred feature point number ðNk << NsÞ:

The effectiveness of the proposed tracker initialisation
metric was tested by performing object tracking of the
‘Football’ and artificial image sequences under different
minimum feature points distances. The algorithm performs
well when the minimum distance between feature point in
the ‘Football’ image sequence case (Fig. 22) is less than five
pixels. A rapid decrease in performance was noticed when
the feature point distance increased above five pixels. Tests
performed on the artificial image sequence case have shown
no significant change in algorithm performance for feature
point distances in the range ½3; . . . ; 7� pixels. A decrease in
the algorithm performance was noticed for a feature point
distance arround 10 pixels. It can be noticed in the artificial
image sequence that the ‘best’ 5-pixel value is equal to the
texture grain size. This shows a possible relationship
between texture grain size and feature point distance.

The effectiveness of the partial occlusion handling
scheme during the tracking process is shown in Figs. 23
and 24. In Fig. 23, the loss of feature points is caused by
partial occlusion. Figure 24 demonstrates the usefulness of
the updating procedure in a case not containing partial
occlusion, since loss of feature points can be caused by

Fig. 19 Normalised correlation for lab image sequence (Fig. 7)
against frame number

Fig. 20 Cost function Ei for algorithm initialisation of artificial
image sequence

Notice that the texture grain size is 5 pixels (Figs. 1, 2)

Fig. 21 Cost function Ei for initialisation process of ‘Football’
image sequence (Fig. 4)

Fig. 22 Tracker outputs for artificial image sequence (a–d) and
‘Football’ image sequence I (e–h)

a and b minimum distance between feature points 5 pixels
c and d minimum distance between feature points 10 pixels
e and f minimum distance between feature points 4 pixels
g and h minimum distance between feature points 5 pixels
Notice the performance degradation at (c),(d) and (g),(h)
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illumination changes, deformations of the tracked objects,
abrupt motion or a combination of them.

6 Conclusions

This paper has presented an object tracking algorithm that is
robust to partial and full occlusion. Information theory-
based metrics were used as a reliability measure for
algorithm initialisation and tracking procedures. The mutual
information and Kullback–Leibler-based metrics provide
the means to detect abrupt changes (partial occlusion, full
occlusion or movement of the occluding object). Further-
more, motion detection of the tracked object is also possible
in static scenes. Finally, an object verification process based
on mutual information was also proposed and applied after
object disocclusion. The use of information theory-based
metrics combined with an occlusion handling scheme
provide an object tracking algorithm that performs better
than [17] in partial and total occlusion situations.

Experimental results have shown that the algorithm
correctly detects and processes partial and total occlusion
situations. The interpretation of variations of the proposed
metrics may lead to a thorough understanding of the object
tracking process in many computer vision applications.

The information theory-based metrics behave better in
partial occlusion situations than the normalised correlation-
based metric. A clear distinction in performance between
the two information theory based metrics cannot easily be
extracted. Nevertheless, mutual information, having the

advantage of being symmetrical and including spatial
information, seems to be the preferred choice.
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Fig. 23 Tracker outputs obtained with and without applying the
partial occlusion handling scheme in a frame of the artificial image
sequence

a With partial occlusion handling
b Without partial occlusion handling

Fig. 24 Tracker outputs obtained with and without partial
occlusion handling scheme in the ‘Football’ image sequence

a With partial occlusion handling
b Without partial occlusion handling
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